
Satellite technology in disaster management

VIVEK BANZAL

24 JULY 2025

Satellite communications play a vital role in the overall global telecommunications market

It is not new, not even in India

Initial Sat Com deployements

Project Specifc - Coal mines in WCL and SECL

Inaccessible area - DHQs - J&K , NE , HP , Hills

DoT deployed satellite base station across India to have some connectivity to DHQs, Pulwama was the last DHQ of india connected on satellite in 1994-95

Upgradation of Sat Com

The mere connectivity - couple of circuits, was upgraded during 1990-2000 by 8 Mbps for bigger places

Drive was also taken to connect important places below DHQ with multichannel

The use of smaller antenna VSAT , VSAT for leased ckt revolutionized the satellite connectivity

Emergency situation

India established exclusive network from all land border state to Delhi on satellite links - PB, GJ, RJ, J&K, AS, MZ, WB

These links, were vital for any break in communication channel to ensure that the state is not isolated

7 MTr dish antenna were deployed serving as Hub for the state satellite, as well as link to Delhi

Iridium - Global

1998- constellation of 90 satellite was put in space

It gave global coverage,
with small brief cases
terminals (Bond movies),
even hand held mobile like
sets (though bigger bulkier)

It was ahead of the time, technology's commercial adoption some time does not work, if it is ahead of time

IRIDIUM struggle in last 27 + years

Planned 77 satellite to cover globe, Started operation in 1998.

Launched 95 satellites, 66 were sufficient to cover the globe, rest used as spares in orbit.

Rs 100/- min tariff

Went into Chapter 11 bankruptcy in 1999

\$4 B write

Started again in 2001. Met 33 satellite Collison in 2008.

Currently on Project Stardust, a <u>3GPP</u> standard-based satellite-to-cellphone service scheduled to launch in 2026

Ten trends are changing the satellite industry in 2025

Core Enabling Technologies



Emerging Deployment Shifts

Sources: Reuters 5

Terrestrial Networks have limitations in disaster management response

Coverage Gaps

Rural, mountainous, forested, or island regions lack sufficient tower infrastructure

Infrastructure Vulnerability

Cell towers, fiber cables, and power lines are highly prone to damage

Network Congestion

Massive surge in traffic during emergencies overwhelms the limited capacity of local networks

Slow Recovery

Rebuilding ground infrastructure takes several days, especially in hostile terrain or during blockages

During the Uttarakhand floods (2013), entire valleys were out of network coverage

Cyclone Fani (2019) knocked out over 5,000 cell towers in Odisha within hours

In Turkey's 2023 earthquake, mobile traffic spike + tower failures led to total blackout in many cities

Nepal earthquake (2015), it took 3-7 days for basic cell coverage to return in remote hill towns

However, satellite capabilities can support in essential ways during all phases of the disaster management

Mitigation

Preparedness

Response

Recovery

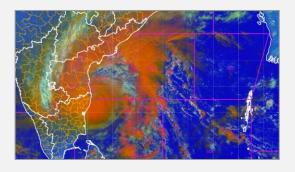
Hazard mapping

Land movement tracking using InSAR and EO satellites

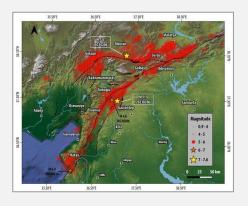
Weather alerts & flood forecasting


Simulation modelling with EO & meteorological satellites coordination using

Emergency communications via VSATs, satphones


Real-time rescue **GNSS** and **EO**

Damage assessment with post-event EO imagery


Infrastructure planning via 3D mapping

Blatten, Switzerland (2024): Sentinel-1 and TerraSAR-X tracked slow ground deformation enabling evacuation before the landslide.

Cyclone Michaung (India, 2023): INSAT & Himawari satellites monitored storm intensity & issued early warnings

Turkey-Syria Earthquake (2023): EO data guided search and rescue by mapping collapsed zones.

La Palma Volcanic Eruption **Recovery:** EO satellites provided lava flow maps & elevation models for rebuilding roads & housing zones. 7

Blatten, Switzerland | Satellite monitoring turned a potential tragedy into a story of preparedness and precision

Tiny Swiss village engulfed by a mountain

Sudden glacial rockslide from Kleines Nesthorn in May 2025

- 90% of Blatten village buried in debris
- River Lonza Blocked
- 300+ residents at risk

Satellite detected abnormalities aiding in evacuation days before tragedy

Sentinel-1 (InSAR) detected abnormal glacier deformation 10 days prior

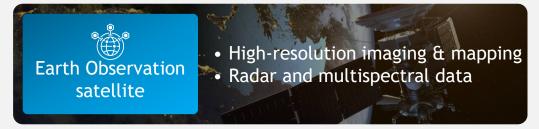
Pleiades Neo visualised terrain shifts in high-res for rescue planning

LiDAR & AVIRIS-4 Spectrometry mapped landslide structure and instability zones

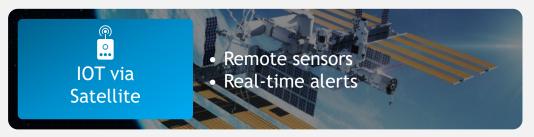
Optical & Radar Imagery identify river damming for evacuation of downstream

Early warning minimised casualties

- 300 residents evacuated
 48 hours prior to
 landslide
- 190 sheep, 26 cows, and about 20 rabbits evacuated by air & land



Sources: Reuters



Key satellite technologies deployed in disaster management

With significant advantages over terrestrial networks

Resilient Connectivity Supports PPDR, NDRF, and DMOC operations when power lines fiber or cell towers are down

Wide-Area Coverage Reaches rural, coastal, and hilly terrains—no reliance on ground infra

Faster
DecisionMaking

Mapping damage enables prioritization of relief and evacuation

Early
Warning &
Monitoring

Predict risks, improve readiness and preventive evacuation

Seamless Inter-Agency Coordination

Enables unified command across DMOCs, responders, and ministries

Chamoli, Uttarakhand | Satellite technology in Chamoli made rescue efforts precise & timely

Glacier triggered deluge in Uttarakhand

Flash flood & mudslide in Tapovan-Rishi Ganga project area in Feb 2021

- ~83 fatalities,~121 missing
- Dozens trapped in hydropower tunnels & submerged villages

Stranded victims, rescue zones identification, communication enabled through tech

VSAT Quick Deploy Antennae provide live visuals & coordination support in accessible locations

Drones (UAVs) located stranded victims in high terrains

DRDO sourced radars detected air pockets beneath sludge in tunnels, identifying rescue entry zone

Sonar Rescue Radars assisted mapping of sludge depth & flood-affected structures

Tech-intensive rescue ensure precise efforts

- Over 170 missing traced & ~32 bodies recovered
- Technology synergy enabled more precise, safer and faster rescue ops

Sources: ANI, The Print

Telcos around the world are focusing on emergency preparedness & disaster resilience; satellite communication is a recent focus globally

SoftBank

Project Kuiper partnership

Enables Verizon to backhaul cellular traffic via satellite to serve rural and disaster-prone areas where building fiber is impractical

SatCOLTs and Flying COW drones

Portable deployables often relying on satellite links to provide temporary coverage to first responders in wildfires or hurricane

Flying base stations in Tohoku Earthquake

29000 earthquake-disabled cell sites were replaced by "flying base stations" by multiple Japanese carriers

Hurricane lan

Verizon deployed satellite uplinks to reconnect several cell sites disables due to hurricane

U.S. FirstNet first-responder network

As entity managing US-First Responder Network, tested satellite connectivity for public safety

High Altitude Platform Systems

Communication drones/ balloons that stay aloft for long durations deployed by HAPS Mobile in the Kumamoto earthquake

BSNL provides crucial satellite communication technology for disaster response to key disaster management authorities

Offering

Features & Use case

- Up to 125 Mbps download / 16 Mbps upload
- Deployed using Ka/Ku-band with DVB-S2X support
- Fully IP-based: Dual Stack (IPv4/IPv6), BGP, VLAN Tagging
- Operates in spot beam HTS networks

- Located in Mumbai & Delhi
- 24×7 operations with scalable gateways
- HTS-ready

- 1m Ku-band manpack terminal, IP67 rated
- Under 20 kg, <15 min setup time
- Flyaway antennas, modems, Wi-Fi-enabled outdoor terminals

- Man-portable systems for on-the-go deployments
- Voice, video, data services supported

National & State level disaster management bodies

BSNL fixed VSAT technology has enabled setting up of Emergency Operation Centres with NDMA & SDMAs

Fixed VSAT for NDMA EOCs

- Pilot led by BSNL to set up satcom for Emergency Operations Centre (EOCs)
- Installed 120 fixed VSAT terminals supplemented by satphones and HF radio
- Covering NDMA, NDRF HQ, all State/UT HQs, and select high-risk districts—between 2016-2019

Fail-safe voice, data, email, video conferencing,

Fixed VSAT in vulnerable districts

- BSNL provided VSATs to EOC's of selected vulnerable districts, in Himachal Pradesh and Meghalaya
- Enabled redundant satellite links and integrated data/voice/handicam video streams

and GIS feeds across multi-level command centers **Impact** Successfully used in real disaster events

(e.g. cyclones, floods)

District Disaster Management Authorities (DDMAs) gained real-time situational awareness, video feeds, and reliable two-way communication with NDMA/State HQs, significantly improving response and coordination

